Electronic-Structure Origin of Cation Disorder in Transition-Metal Oxides

Abstract

Cation disorder is an important design criterion for technologically relevant transition-metal (TM) oxides, such as radiation-tolerant ceramics and Li-ion battery electrodes. In this Letter, we use a combination of first-principles calculations, normal mode analysis, and band-structure arguments to pinpoint a specific electronic-structure effect that influences the stability of disordered phases. We find that the electronic configuration of a TM ion determines to what extent the structural energy is affected by site distortions. This mechanism explains the stability of disordered phases with large ionic radius differences and provides a concrete guideline for the discovery of novel disordered compositions.

Publication
Phys. Rev. Lett. 119 (2017) 176402.
Date